
Generic Types

Lab 2 next week will use inheritance features of
Java that we don't touch on in the CS 150 class. You
should read some of the Weiss text about
subclasses, abstract classes, interfaces, and generic
types:

Sections 4.2 and 4.4

These are the main things we'll be talking about in
the next few classes.

The Java Collections collect data, but what kind of
data? Python doesn't care about types, so it will
let you have a list where one element is an integer,
the next is an object of class Person, the next is a
boolean, and so forth. Java does care about types.

All of the objects in a Java collection have to have
the same type. But what type?

Java's solution (Java 5 in 2004) to this is to allow classes
to parameterize types. For example, in Lab 2 you will
implement a class called MyArrayList. Here is the start of
this class declaration:

public class MyArrayList<E> {
E [] data;
int size;
public MyArrayList() {

size = 0;
data = new E[2];
....

A specific list might have type
MyArrayList<String>

We will construct a new array list of Strings with
MyArrayList<String> L = new MyArrayList<String>();

Note that the constructor we call is
new MyArrayList<String>()

though in the class declaration the constructor is defined as
public MyArrayList()

Look again at the class declaration:
public class MyArrayList<E> {

E [] data;
int size;
public MyArrayList() {

size = 0;
data = new E[2];
....

E is used as a type throughout this class
declaration. Of course, each instance of E refers
to the same type.

We could also have classes that use several type
parameters:

public class Pair<A, B> {
A first;
B second;
public A getFirst() {

return first;
}
....

The actual types put in place of the type
parameters need to be reference types -- classes or
arrays. Primitive types, such as int, boolean, and
float are not allowed. Fortunately, Java provides
wrapper classes for each of the primitive types.
For example, Integer is a Java class that holds a
single int value. Java even automatically wraps
and unwraps primitive types.

For example, suppose you want to make an ArrayList of
ints. The declaration is

ArrayList<Integer> L = new ArrayList<Integer>();

We could then call the add method for this list to put a
value into L with

L.add(23);

Java automatically wraps 23 into an Integer to fit into this
list, as though you had written L.add(new Integer(23));

Similarly, you can say
int x = L.get(0);

even though L.get() technically returns an Integer, not an
int.

